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Abstract
We have developed a field theory for strongly coupled Coulomb fluids,
via introducing new functional–integral transformation of the electrostatic
interaction energy. Our formalism not only reproduces the Lieb–Narnhofer
lower bound, but also bridges logical gaps which previous approaches have
involved.

PACS numbers: 03.50.−z, 05.20.−y, 61.20.Gy, 82.70.Dd

1. Introduction

Theoretically, there have been thorough studies on strongly coupled plasmas; more than two
decades have passed since the extensive reviews [1] appeared. As a consequence, simulation
results for the one-component plasma (OCP) have been reproduced precisely by various
methods [1–5]. Turning our attention to the two component plasma (or the restricted primitive
model electrolytes), however, even the main term of internal energy given by liquid state
theories has not coincided with that of crystalline structure [6, 7].

While this fundamental discrepancy has not been resolved, recent simulations and models
in the field of soft matter physics have required to investigate more complex Coulomb fluids
in the strong coupling regime [8, 9]. One of them is colloidal suspensions modelled as either
Yukawa fluids [10, 11] or asymmetric two-component plasmas, i.e. electrolytes with large
asymmetry of size and charge [12]. Also Monte Carlo simulations have reported that the
distribution of strongly coupled counterions dissociated from a macroion is quite different not
only from the Poisson–Boltzmann solution, but also from that of the two-dimensional OCP
formed on the macroion surface due to the freedom of extra one dimension [9, 13].

The necessity for addressing the advanced issues prompts one to explore strong coupling
theories in a more systematic and general way [14–17]. In our previous work [16], a new field-
theoretic formulation has thus been devoted to explaining the above counterion electrostatics.
This letter will now apply to the OCP, the well-established system, our formalism with

0305-4470/05/070121+07$30.00 © 2005 IOP Publishing Ltd Printed in the UK L121

http://dx.doi.org/10.1088/0305-4470/38/7/L03
http://stacks.iop.org/ja/38/L121


L122 Letter to the Editor

considerable improvements, and will demonstrate the relevance through revisiting the lower
energy bound of the OCP in the strong coupling limit (SCL).

2. Lieb–Narnhofer lower bound revisited

Rescaling the model system. Let us consider the OCP which consists of N particles with
electric charge Ze embedded in a neutralizing background of its volume L̃3. As is well
known, the OCP is characterized by the Coulomb-coupling constant � = Z2e2/(4πεkBT ã)

and the Coulomb interaction with large coupling constant (� � 1) has been referred to as
‘strong coupling’, where ε is the dielectric permittivity, kBT the thermal energy, and ã the
Wigner–Seitz (WS) radius defined by (4πã3/3)N = L̃3.

For clarifying the �-dependence of the OCP, we will rescale the system by the WS radius
ã. Here, in order to avoid confusion about symbols, we would like to make it clear that tildes
are attached to original values and not to the rescaled ones for abbreviating the notation of the
rescaled expressions, and that all of the normalized symbols without tildes are dimensionless.
For example, correspondences are the following: scalars (the system size L̃ and the WS
length ã) transform to L = L̃/̃a and a = ã/̃a = 1, and vectors of the particles’ positions
r̃i (i = 1, 2, . . . , N ) and of the separation r̃ = r̃i − r̃j , respectively, to ri = r̃i /̃a and r = r̃/̃a;
the differential form is rescaled as dr = dr̃/̃a3 while the smeared number density in the
rescaled system is given by n = N/L3 = Nã3/L̃3; therefore we have the reparametrization
invariance n dr = (N/L̃3) d r̃. It should be noted that the rescaled form of the smeared
concentration, n = Nã3/L̃3, is not a variable but is equal to the constant, n = 3/(4π), as
found from the above definition of the WS radius ã.

Ewald-type identity and its inequality condition. Denoting the excess internal energy per ion
in the kBT -unit by u ≡ U/(NkBT ), the Ewald hybrid expression u = (n/2)

∫
dr h(r) [φ(r)−

θ(r) + θ(r)], valid for any auxiliary function θ(r), reads [5, 18]

u = n

2

∫
dr h(r) [φ(r) − θ(r)] +

1

2

∫
dk

(2π)3
S(k)θ(−k) − 1

2

∫
dr δ(r)θ(r), (1)

where the radial distribution function g(r) is replaced by the total correlation function
h(r) = g(r) − 1 considering the electrical neutrality, φ(r) = �/|r| is Coulomb interaction
potential, and the structure factor S(k) is the Fourier transform of δ(r) + nh(r). The convexity
conditions, g(r) = 1 + h(r) � 0 and S(k) � 0, then lead to

u � −n

2

∫
dr[φ(r) − θ(r)] − 1

2

∫
dr δ(r)θ(r) ≡ uL{θ}. (2)

The best lower bound has been evaluated from optimizing the above functional uL{θ} with
respect to θ(r) [18, 19].

Onsager’s smearing. Following Lieb and Narnhofer [19], let us specify the auxiliary function
θ(r) of the form

θ(r; {q}, b) ≡ θq(r) =
∫

dx dy φ(r + x − y)q(x)q(y), (3)

where x and y are internal vectors of charged spheres (or Onsager balls) whose charge
distribution and radius are Zeq and radius b(�a) equally, and the integrand φ(r + x − y)q(x)

q(y) represents the Coulomb interaction between a point x of one ball and another y of the
other sphere (see figure 1). The specified auxiliary function θq(r) therefore corresponds to
the Coulomb interaction potential between Onsager balls. Moreover, since the normalization
condition

∫
|x|�b

dx q(x) = 1 is imposed, the auxiliary interaction potential θq(r) between
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Figure 1. A configuration of two Onsager balls illustrates the vector, r + x − y, explained in the
text. In the strong coupling limit, the spheres are in contact with each other because the radius b
is found to be equal to the Wigner–Seitz one a [19].

non-overlapping balls is the same as the bare Coulomb interaction: θq(r; |r| � 2b) = φ(r).
This property of the auxiliary potential implies that the Onsager system coarse-grains the point
charges within the range b.

The minimization conditions with respect to θq (i.e. δuL/δq = ∂uL/∂b = 0) then
yield the Lieb–Narnhofer lower bound in the strong coupling regime (� � 1): uL

{
θmin
q

}
= −0.9�, where the optimized charge distribution is of the forms, qmin(x) = �(|x| − bmin)

and bmin = a [18, 19].

Open problems. We would like to point out logical leaps which the conventional discussions
have made:

• There are no formulations to show that the excess internal energy u given by equation (1)
is reduced to the functional uL{θq} defined by equation (2) in the SCL (� → ∞).

• Since the above framework is based on both the Ewald-type identity and the convexity
conditions, it has not been clarified why the trial interaction potential θq (or q and b)
should be minimized to know the best lower bound.

These will be addressed in the last section, after deriving the Lieb–Narnhofer bound field-
theoretically.

3. Variational approach

Reference system. Let us take the reference system constituted of the above Onsager balls.
The Helmholtz free energy F0 then reads exp(−F0{θq}) = Trcl exp

(−Uq{ρ̂} + U self
q

)
. Here,

for brevity, we introduce the classical operator Trcl = (N !)−1
∫

dr1 · · · drN , set the de
Broglie thermal wavelength unity, and represent all energies (F0, Uq, J , etc) in the kBT

unit. With the potential θq of the form (3), the interaction energies are expressed as
follows: Uq{ρ̂} = (1/2)

∫
d1 d2 ρ̂(1)ρ̂(2)θq(1 − 2) and U self

q = Nθq(0)/2, where we set

that ρ̂(1) ≡ ∑N
i=1 δ(1 − ri ) − n.

Gibbs–Bogoliubov inequality. The real system consisting of point charges is recovered from
replacing an arbitrary function q by the Dirac delta δ in equation (3). Denoting the input by
the subscript δ, the associated free energy F is expressed as e−F = Trcl exp

(−Uδ{ρ̂} + U self
δ

)
.

We aim to reach the true free energy F by exploiting the Gibbs–Bogoliubov inequality [20],

F � F0 +
〈(
Uδ{ρ̂} − U self

δ

) − (
Uq{ρ̂} − U self

q

)〉
0 ≡ Fv, (4)

where 〈O〉0 represents the average for the reference system: 〈O〉0 = (1/e−F0) TrclO
exp

(−Uq{ρ̂} + U self
q

)
. With the use of the total correlation function h0(r) in the reference

system, the variational free energy Fv defined in equation (4) reads

Fv{θq} = F0 +
Nn

2

∫
|r|�2b

dr h0(r)[φ(r) − θq(r)], (5)
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where the integration range is specified considering that φ(r) − θq(r) = 0 in the region
|r| � 2b. Equations (4) and (5) imply that the reference system is to be selected to minimize
the variational free energy Fv .

4. Reference free energy F0 in the SCL

Manipulating the interaction energy Uq{ρ̂}, the present section reveals which term is negligible
in the SCL. The formulations are roundabout at first glance, but relevant and indispensable to
taming strongly coupled Coulomb fluids.

4.1. Manipulation of the interaction energy, Uq{ρ̂}
The steps are threefold. First we insert the density field {ρ} as usual. Next, instead of
eliminating the ρ-field by the Gaussian-integration, we further introduce a potential field {ψ}
via Dirac delta functional. Lastly, the Hubbard–Stratonovich transformation of the ψ-field
adds another density field {c}.
Step 1 (inserting density field {ρ}). Following the standard procedure [21], the first
transformation into functional–integrals exploits the identity for the Fourier-transformed delta
functional: 1 = ∫

DρDϕ exp[i(ρ − ρ̂) · ϕ], where f · g ≡ ∫
d1 f (1)g(1). Inserting the unity

term into e−Uq {ρ̂}, we have e−Uq {ρ̂} = ∫
DρDϕ exp(−Uq{ρ} + i(ρ − ρ̂) · ϕ).

Step 2 (potential field {ψ} introduced by hand). It is tempting to proceed to Gaussian-integrate
over the ρ-field because Uq{ρ} is quadratic. Nevertheless, we would rather add the potential
field {ψ} than subtract through the following identity:

1 =
∫

Dψ Det

(−∇2

4π�

) ∏
{1}

δ

[−∇2ψ(1)

4π�
− ρ(1)

]
≡

∫
Dψ�{ψ, ρ}. (6)

The Dirac delta functional defines the potential ψ as ∇2ψ = −4π�ρ which is identical to the
Poisson equation, ∇2(kBT /Ze)ψ̃ (̃1) = −Zeρ̃(̃1)/ε, in the original scale with tildes due to
the correspondences: ∇2 = ã2∇̃2 and ρ = ã3ρ̃. In other words, ψ̃ is the Coulomb potential
in the unit of kBT /Ze. Inserting again the above identity into e−Uq {ρ}, we have

e−Uq {ρ} =
∫

Dψ�{ψ, ρ} exp(−Uq{ψ})

Uq{ψ} = 1

8π�

∫
d1 dx dy ∇ψ(1) · ∇ψ(1 + x − y)q(x)q(y),

(7)

where use has been made of the following relations: ρ(1) = −∇2ψ(1)/(4π�),
∫

d2 φ(1 +
x − 2 − y)ρ(2) = ψ(1 + x − y), and (∇2A)B = ∇ · (AB) − ∇A · ∇B.

Step 3 (the Hubbard–Stratonovich transformation). Since the form (7) of Uq{ψ} is quadratic,
it is possible to perform the Hubbard–Stratonovich transformation as follows:

e−Uq {ψ} = 1∫
Dc e−Uq {ψ≡0,c}

∫
Dc exp(−Uq{ψ, c}) (8)

Uq{ψ, c} = 1

2

∫
d1 d2 dx dy

q−1(x)q−1(y)

|1 + x − 2 − y|c(1)c(2) +
i

�1/2
c · ψ. (9)
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Only the ψ-linear term has the �-dependence proportional to �−1/2, which suggests the
possibility of the strong coupling expansion.

Result (four-field representation). Combining the three steps provides the following four-field
expression:

e−Uq {ρ̂} = 1∫
Dc e−Uq {ψ≡0,c}

∫
DρDϕDψDc �{ψ, ρ} exp[−Uq{ψ, c} + i(ρ − ρ̂) · ϕ]

(10)

with �{ψ, ρ} and Uq{ψ, c} defined in equations (6) and (9).

4.2. Approximate form in the limit � → ∞
We would like to validate that the second term on the right-hand side of equation (9) is fairly
negligible in the SCL (� → ∞). To this end, we give the Fourier-transformed expression,

Uq{ψ, c} =
∑

k

2π

(
ckc−k

k2qkq−k

)
+

i

�1/2
ckψ−k, (11)

where |k| = k, and the denominator k2qkq−k of the first term on the right-hand side is regarded
as the Fourier component of |∇xq|2. If this denominator increases with larger wavenumber and
becomes comparable to �1/2, it is not always justified to ignore the second term proportional
to 1/�1/2; the approximation holds only in the coarse-grained scale [16]. Due to Onsager’s
smearing of the reference system, however, k2qkq−k keeps finite. For example, this can be
checked from the relation limk→∞(k2qkq−k) = limk→∞ σ 2k2[sin(kb)/(kb)]2 � (σ/b)2 for
a rapid distribution which changes abruptly at the ball surface: q(x) = σδ(|x| − b) and
σ = 1/4πb2.

The above discussions verify that lim�→∞ Uq{ψ, c} = Uq{ψ ≡ 0, c}. The four-field
representation (10) is then reduced to the three-field expression which simply yields unity:

lim
�→∞

e−Uq {ρ̂} =
∫

DρDϕDψ�{ψ, ρ} exp[i(ρ − ρ̂) · ϕ] = 1, (12)

where the ψ-field integration gives 1 = ∫
Dψ�{ψ, ρ}, therefore lim�→∞ e−Uq {ρ̂} =∫

DρDϕ exp[i(ρ − ρ̂) · ϕ] = 1.
We have thus arrived at the limiting interaction energy, lim�→∞ Uq{ρ̂} = 0, meaning

that violating electrical neutrality is forbidden even locally. In this SCL approximation, the
reference free energy F0 takes such a simple form as

lim
�→∞

F0{θq} = −N

2
θq(0) +

∫
dr n ln n − n, (13)

corresponding merely to the mean-field free energy.

5. Variational energies in the SCL

To evaluate the perturbative contribution given in equation (5), we need to find the density–
density correlation between charged balls in the reference system. Since the above section
shows that the interactions between Onsager balls are irrelevant in the SCL, we have the
limiting behaviour g0(r) ≡ 1 + h0(r) → 0. Equation (5) hence reads

lim
�→∞

Fv{θq} = lim
�→∞

F0{θq} − Nn

2

∫
|r|�2b

dr[φ(r) − θq(r)], (14)
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where the reference free energy F0 is of the form (13). Recalling that φ and θq are proportional
to �, the variational internal energy uv ≡ �(∂Fv{θq}/∂�) is obtained from equation (14) as

lim
�→∞

uv{θq} = uL{θq}; (15)

see equation (2).
The Gibbs–Bogoliubov inequality (4) says that the best free energy Fv

{
θmin
q

}
is obtained

from minimizing the above expression (14): lim�→∞ δFv/δq = ∂Fv/∂b = 0. Moreover, in
the SCL, it is the same thing that minimizes Fv and uv (or uL) with respect to θq . Our formalism
thus reproduces the Lieb–Narnhofer lower bound: lim�→∞ uv

{
θmin
q

} = uL

{
θmin
q

} = −0.9�.

6. Concluding remarks

Finally, let us consider the questions posed at the end of section 2, looking back at the
arguments we made. Roughly speaking, the proof of equation (15) has been offered, and the
variational approach itself forms the basis of the minimization scheme by Lieb–Narnhofer; it
then seems that the missing link described in ‘open problems’ has been almost found. The
supplementary explanations of the following aspects, however, remain to be added: (S1) the
underlying physics of the reference system which selects the mean-field picture in the SCL,
and (S2) the connection between the Gibbs–Bogoliubov inequality and the best lower bound
of the free energy.

(S1) Inherently, the mean-field theory is the saddle-point approximation valid in the weak
coupling regime, � � 1 [14]. Some insight is hence required to explain the mathematical
result that the reference free energy (13) is of the same form as the mean-field one in
spite of the SCL. We focus on the indistinguishability between the mean-field system
smeared overall and the close packing of Onsager’s charged balls. The similarity gives
an interpretation that the mean-field picture mimics the frozen system filled with the
Onsager balls inside which charges are cancelled by the background; indeed, the fake non-
correlation of the reference system in the SCL approximation has led to the vanishing of
the radial distribution function, g0(r) → 0(|r| � 2a), which should actually be associated
with the non-overlapping of frozen balls.

(S2) Recently it has been proved that the mean-field free energy with repulsive interaction
potential is the exact lower bound [22], and our limiting reference free energy
lim�→∞ F0{θq}, equal to the mean-field one, is just the case: lim�→∞ F0{θq} � F0{θq}.
Therefore, considering also the inequality h0(r) � −1, the limiting variational free energy
(14) is found to be the lower bound of Fv give by equation (5):

lim
�→∞

Fv{θq} = lim
�→∞

F0{θq} − Nn

2

∫
dr[φ(r) − θq(r)] � Fv{θq}, (16)

which is valid for any auxiliary function θq . In principle, it is then possible for an ideal
function θ id

q to realize Fv

{
θ id
q

} = F with an arbitrary coupling constant �; to be noted,
however, an ideal function θ id

q in the case of finite coupling constant cannot be the best,
θmin
q , for � → ∞. The relation (16) and the Gibbs–Bogoliubov inequality (4) thus lead

to

lim
�→∞

F ≈ lim
�→∞

Fv

{
θmin
q

}
� lim

�→∞
Fv

{
θ id
q

}
� Fv

{
θ id
q

} = F, (17)

indicating that lim�→∞ Fv

{
θmin
q

}
is as close as possible to the exact lower bound,

lim�→∞ F , of real free energy F.
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To summarize, it has been shown by reformulating the Lieb–Narnhofer lower bound that
our field-theoretic approach to the strongly coupled OCP is superior in consistency. Further
evaluating the next leading order in 1/�1/2 expansion (effectively 1/�), we obtain the excess
internal energy similar to Rosenfeld’s one [4] which interpolates between the Debye–Hückel
bound (relevant in the weak coupling regime � � 1) [23] and the Lieb–Narnhofer bound for
� � 1 [19]; the details will be presented elsewhere.
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